2
{&l@E) Computer Graphics

N2 ‘I"“'I

Sen

View in 2D & 3D

Teacher: A.prof. Chengying Gao(5k32)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

mailto:mcsgcy@mail.sysu.edu.cn

Outline

* 2D Viewing
* 3D Viewing
* Classic view

* Computer view
e Positioning the camera

* Projection

Computer Graphics

2D Viewing

f i I A f
____J'I I'l.,____ J (. " I'l_ — L / I'-___ .
NN NN
lo <>f<> <>: u<>;’<>%><~>}(
II <> _J <> '._ <> |'I II' III_

i _,_ﬂ
-

* The world is infinite (2D or H.<>/%> “*Q<>f<>k_f5/>f<>$<;{

‘V_.J
» - |III [<> |||I
3D) but the screen is finite / O NSNB NS

,<><> VoSolo Bo\o3a)
* Depending on the details the B e
user wishes to see, he limits |
his view by specifying a
window in this world

Computer Graphics

2D Viewing

* By applying appropriate transformations we can
map the world seen through the window on to the
screen

| ~
w X0 O é)<> <>O</ “‘~./ <> \/ P4
R S tte!
R R

2D World Screen

Computer Graphics

Windowing Concepts

A y J1-r;fm7’m-x.*.5'i:9:
« Window is a rectangular region in
the 2D world specified by window———
yCenter
« a center (xCenter, yCenter)
and X
-
» size windowSize wCenter
* Screen referred to as Viewport is (0,0)
a discrete matrix of pixels specified
by viewport
* Size screenSize (in pixels)

Computer Graphics

2D Viewing Transformation

* Mapping the 2D world seen in the window on to the
viewportis 2D viewing transformation

* also called window to viewport transformation

‘ X

- -

A

Y

2D Vi ewfng
Transformation

*
i&i@:) Computer Graphics

Deriving Viewport Transformation

.l'ny

4 /]

NI
X /- X L) X

x — xCenter (x — xCenrer) * scaleFactor
y — yCenter (y - yCem‘er)' scaleFactor

¥
y

screenSize

where, scaleFactor =— _
windowSize

AN
i&#:) Computer Graphics

Deriving Viewport Transformation

(-screenSize/2,

screenSize/2) Y (0.0) N
X

+x
+yl
screenSize
- +(x = xCenter) ® scaleFactor
screenSize
= — (y - yCenrer)' scaleFactor

* Given any point in the 2D world, the above
transformations maps that point on to the screen

#:] Computer Graphics

The Aspect Ratio (MFELEL)

* In 2D viewing transformation the aspect ratio is
maintained when the scaling is uniform

» scaleFactor is same for both x and y directions

Y) screenVVidth
y ::NlndDWWIdﬂ:I=

I -

o0 F

@ _oop

3 e

11 @

.3 3 s

X
-
2D World Screen

Computer Graphics

Maintaining the Aspect

L 3

Y

screenHeight
O scaleFactor = &

windowHeight
X
- -
Y
'y
y
leFact screen Width
scaleFactor =
Q windowWidth
X
- .-

OpenGL Commands

gluOrtho2D(left, right, bottom, top)

Creates a matrix for projecting 2D coordinates onto the screen
and multiplies the current matrix by it.

glViewport(x, y, width, height)

Define a pixel rectangle into which the final image is mapped.

(X, y) specifies the lower-left corner of the viewport.
(width, height) specifies the size of the viewport rectangle.

*
i&@E) Computer Graphics

OpenGL Commands

i [174(400,300)

S (10,145)

(180,15)

s

HH S AR A5 7 11(0.0, 200.0, 0.0, 150.0)

:&#:) Computer Graphics

Outline

* 2D Viewing
* 3D Viewing
* Classic view

* Computer view
e Positioning the camera

* Projection

Computer Graphics

3D Viewing

* To display a 3D world onto a 2D screen

® Specification becomes complicated because there are
many parameters to control

® Additional task of reducing dimensions from 3D to
2D (projection)

® 3D viewing is analogous to taking a picture with a
camera

Computer Graphics

The Pinhole Camera

Camera Obscura The principle upon which all camera equipment
works is traced to artist / inventor Leonardo da
Vinci who showed that all that was needed to
project an image was a small pinhole through

Leonard da Vinci

which light could pass. The smaller the hole the
- sharper the image.

The basic camera, called a pinhole camera, existed in the
early 17th Century. It took much longer for science to
find a light sensitive material to record the image. It was
not until 1826 when Joseph Niepce from France discovered
that silver chloride (S{k3R) could be used to make
bitumen sensitive to light.

&
<

The world through a pinhole

http://www.phy.ntnu.edu.tw/java/pinHole/pinhole.html

Computer Graphics

Transformation and Camera Analogy

* Modeling transformation

® Shaping, positioning and moving the objects in the world scene

» Viewing transformation

® Positioning and pointing camera onto the scene, selecting the region of interest

* Projection transformation

® Adjusting the distance of the eye

* Viewport transformation

® Enlarging or reducing the physical photograph

24 Computer Graphics 2014, Z|U

Computer Graphics

Outline

* 2D Viewing
* 3D Viewing
* Classic view

* Computer view
e Positioning the camera

* Projection

Computer Graphics

Classic View

* Three basic elements needed
— One or more objects
— Observer with a projection plane

— Projection transform: from the object to the projection
plane

* The classic view is based on the relationship between
these elements

Computer Graphics

Plane Geometry Projection

e That is projected onto the plane of the standard projection

* Projection line is a straight line
* Gathering in the center of projection

* Parallel to each other
* This projection preserve collinearity

e Some application such as mapping (tEiLEY)need to be
non planar projection

Computer Graphics

Taxonomy of Projection

Planar Projection

Parallel projection

Oblique

Perspective projection

Orthographic |_1p_t| |_2p_tl |_3p_t|

Cavalier

|
|Cabinet

Axonometric

Multiview
Orthographic

[sometric

Dimetric

Trimetric

Figures extracted from Angle's textbook

Computer Graphics

32

Computer Graphics 2014. ZIU

Orthogonal projection (IFAc#%52

* Projection line perpendicular (EEK) to the plane of projection

4 o
,I "o
;'
. DOP

5
DOP: Direction of Projection = Eye position at infinity

Computer Graphics

Multi-view orthographic projection (ZfBEIFA RS,

* The projection plane parallel to the reference plane(DOP is
perpendicular to the view plane)

e Usually projection from the front, top and side

Front

Back

Multi-view of CAD parts

FECADAIZEF AT, 1@ H
TN H R =N S B DL A 2
ks e AP

AV

/)
0y

III’
.W///A
7

.

Computer Graphics

Y Princrofeseiing - Rbwnoceeos (Educstiona
Fle £t View Cuve Soface Sobd Mesh Dimemion Tesesform Took Anshre Render Help
Choose opton (Extents Selected 17011 _Edents

Commana:|

DeRalx 00

QR e &HPHOROVAZ ¥
E §%LebRQgOwJUOM -

~O 4P LPPBeu>rP 0690008 TB5:0

Advantages & Disadvantages

* Keep the distance and angle
* Remain the shapes
* Use for measurement (building, manual)
* Can't see the global real object shape, because many surface
not visible in view

* Sometimes adding isometric drawing (ZF &)
| N 2 [‘%ﬁ\%’o 3 »@%0 “ r\ 5 /./_._\\

Computer Graphics

Axonometric projection (3HFzE2

® DOP orthogonal to the projection plane, but...
...orient projection plane with respect to the object

e Parallel lines remain parallel, and receding lines are equally foreshortened by some
factor.

=ANEEXITR P EEXIFR =AEEEAR

Isetric %EEE;}']U Dimetric _T_E:‘;)n\u Trimetric IEE;W\U
Projection type depends on angles made by projector with the three principal axes.

Figures extracted from Angle's textbook

Computer Graphics

Mechanical Drawing

iIsometric £4HE trimetric *&A4H

AV
i&i#:) Computer Graphics

77 /,

Oblique Projections (Fl¥E{74%57)

® Most general parallel views

® Projectors make an arbitrary angle with the
projection plane

® Angles in planes parallel to the projection plane are

preserved NPT
cavalier cabinet
N #—M
Cavalier Cabinet |
Angle between projectors and projection Ang_le I?EWVEE” P!’DJECtD;'S and
plane is 45°. Perpendicular faces are projection plane is 63.4°.
projected at full scale Perpendicular faces are projected at
50% scale

Computer Graphics

Perspective projection

PRP: Projection Reference Point = Eye position

*
i&@E) Computer Graphics

Early Perspective

Giotto di Bondone (1267~1337)

XA KR. 1412V E

XK, NNIANNARTLZEZR. X
Z2E XM AR BLUEREXF
BELMERELHEREEINE, H
IHE A ZRBRABIXALF 77 EAR
5§ FRYZ B A #,

Computer Graphics

27

Not systematic -- lines do not converge
to a single "vanishing" point

Computer Graphics 2014, ZIU

Vanishing Points

* On the object of all parallel lines (not parallel to the projection
plane) projected to a point

* Hand draw simple perspective projection on the need to use

the vanishing point

Vanishing Point

Computer Graphics

Vanishing Points

(& w
Brunelleschi Filippo Brunelleschi
(1377-1446), BHAXZ
BRAEER. BZIR. 2
M. AR TFEIM. 1420-
36F [E T B ZRFEAEM
=SaRm, ZR7EKETR
5SBEMENZARE TR,
| 4 ISFEEHLAAMEIEEN
=, EZEERBFER

Invented systematic method
of determining perspective "
projections in early 1400's .

VPR

Brunellegghi's Peepsﬁw (iipeiy)

28 Computer Graphics 2014, ZJU

Perspective Projection

® Characterized by diminution of size

® The farther the object, the smaller the image
® Foreshortening depends on distance from viewer

® Can’t be used for measurements

® Vanishing points

Vanishing//\

point

Computer Graphics

Perspective Viewing

1. —RiEH |5 AW KEFSHEARLE
RO FH @ -FAT, BT, WEG @GR EKA —A
RE

— IRIEAL
(BEER KR R &

2. EEYL eamE52RAMN S E T QB ETF
7, M5 FBIHLERLKRGF @4, iy, KEF
R R BT @R ERESA — AR E.

|\ 7 6

P RRIERL
(KEA KR

3. =ZREM &
@5 ZAHK.
. B4 F M
&, sbEy, K. ®.
= 7 B A AR

:n-f>a

/4

|y

‘!5\0
= RIE
(KEFEA KR R
B3

*
i&i#:) Computer Graphics

Outline

e 2D Viewing The fundamental difference between the

classic view and computer view:

* 3D Viewing

« All the classical views are based on a particular
relationship among the objects (X4%5), the

. .
Classic view viewers (MZ2#), and the projectors (I &5/%k).

 Computer view « In computer graphics, we stress the
independence of the object specifications (XI5

* Positioning the camera £X) and camera parameters (B{&H18%0).

* Projection

Computer Graphics

Computer view

* The view has three functions, are implemented in pipeline
system

e Positioning the camera

e Setup the model-view matrix

e Set the lens

* Projection matrix

* Clipping
e view frustum

Object Camera Clip
coordinates coordinates coordinates

Model-view Projection

. ' =~ Vertices
transformation transformation

Vertices —m»

Computer Graphics

Camera in OpenGL

* In OpenGlL, the initial world frame and camera frame are the
same

* A camera located at the origin, and point to the negative
direction of Z axis

* OpenGL also specifies the view frustum default, it is a center at
the origin of the side length of 2 cube Y

:&#:) Computer Graphics

Default projection

* Default is the projection of orthogonal projection

‘//‘ T mwesm
= z=0

Computer Graphics

Outline

* 2D Viewing
* 3D Viewing
* Classic view

* Computer view
e Positioning the camera

* Projection

Computer Graphics

Moving the camera frame

* If you want to see objects with positive Z coordinate more, we
can

* Moves The camera along the positive Z axis
* Moves the object along the negative Z axis
* They are equivalent, is determined by the model-view matrix

* Need a translation: glTranslated(0.0, 0.0, d);
* Here,d>0

Computer Graphics

Moving the camera frame

After translated d, d>0

Default frame

YiYe Ye

> X, X X

A7\ <)\

() (b)

Moving the camera frame

e Can use a series of translation and rotation to the camera
position to any position

* For example, in order to get the side view

* Rotate the camera: R y
* Move the camera from the origin: T A
« C=TR

Computer Graphics

Viewing Specification

IEFM up-direction

Specify (up Vector)
A —
Focus point or reference point, Y MRSE R
typically on the object Rf%}(pei"ejlce
L VIrp
- . ’ view
(view reference point) @ Direction
i WME T

direction of viewing

(viewDirection) z

picture’s up-direction (upVector) X

All the specifications are in world coordinates

*
i&i@:) Computer Graphics

View Reference Coordinate System

- - BT MR A BRI
e EEIAEE, BEEE.

s

r . :‘: !
World coordinates vID
n = —viewD irection
u = upVector x n 1

(view plane normal)

= 1% 1 View Reference

Plane

Computer Graphics

View Reference Coordinate System

World coordinates vrp

* Once the view reference coordinate system is
defined, the next step is to project the 3D world
on to the view reference plane

Computer Graphics

Simplest Camera Position

 Projecting on to an arbitrary view plane looks
tedious

* One of the simplest camera |
positions is one where vIp coincides Y

with the world origin and

,v,n matches x,y,z

- Projection could be as simple 0718"
as ignoring the
z-coordinate

AV
i&#:) Computer Graphics

World to Viewing coordinate Transformation

* The world could be transformed so that the view reference
coordinate system coincides with the world coordinate system

e Such a transformation is called world to viewing coordinate
transformation

* The transformation matrix is also called view orientation matrix

Computer Graphics

Deriving View Orientation Matrix

A V

71
translate
X

* The view orientation matrix V. —vevrp
transforms a point from world
coordinates to view coordinates

Computer Graphics

A More Intuitive Approach Offered by GLU

s OpenGL provides a very helpful utility function that
implements the look-at viewing specification:

gluLookAt (eyex, eyey, eyez, // eye point
atx, aty, atz, // lookat point
upx, upy, upz); // up vector

m [hese parameters are expressed in world coordinates

Computer Graphics

OpenGL Viewing Transformation

gluLookAt (ex,ey,ez,1x,1ly,1lz,ux,uy,uz)

= postmultiplies current matrix, so to be safe:

glMatrixMode (GL MODELVIEW) ;
glLoadIdentity() ;

gluLookAt (ex,ey,ez,1x,1ly,1lz,ux,uy,uz)
// now ok to do model transformations

EBSRE TS AR R PG AR R .)R, BATEAASR
RABHPVERETBN T FEREAR, R AL B A, il R
FRAEEAT 3 e B FRATHOUW SR 2 T

*
i&i@:) Computer Graphics

gluLookAt lllustration

*
i&i#:) Computer Graphics

Look-At Positioning

s We specify the view frame using the look-at vector a
and the camera up vector up

= [he vector a points in the negative viewing direction

L
a = Paye - Plnnk P
<3,
Peye Pluok

=

= In 3D, we need a third vector that is perpendicular to
both up and a to specify the view frame

*
i&i@:) Computer Graphics

Where does it point to?

= [he result of the cross product is a vector, not a scalar, as
for the dot product

= In OpenGL, the cross product a x b yields a RHS vector.
a and b are the thumb and index fingers, respectively

AN
i&#:) Computer Graphics

Constructing a Coordinates

= [he cross product between the up and the look-at vector

will get a vector that points to the right.
)

r=upxa

I

= Finally, using the vector a and the vector r we can
synthesize a new vector u in the up direction:

tup

aﬁu=axr

r

*
i&i@:) Computer Graphics

Rotation

m Rotation takes the unit world frame to our desired

view reference frame:

r, u a, 0] 1 0 0 O
r,r u a, 0 _ O 1 0 OR
rr u a, O 0 010
0 0 1 _O 00 1_

AV
i&#:) Computer Graphics

Translation

= [ranslation to the eye point:

1 0 0 eye,

T=0 1 0 eye,
0 0 1 eye,
000 1

a
y
W
y.d X

*
i&i@:) Computer Graphics

Composing the Result

m [he final viewing coordinate transformation is:

1 0 0 eye|lr, u a O]
E_TR - 0 1 0 eyeffr, u, a, 0
O 0O 1 eye,|Ir, u a, O
0o 00 10 0 1]

*
i&i@:) Computer Graphics

The Viewing Transformation

= Transforming all points P in the world with E-:

r. r, rpb O][1 0 0O -eye,]
V-RT — u u, u, 00 1 0 -eye,
a, a, a, 00 0 1 -eye,
O 0 O 1__0 0 O 1
s Where these are normalized vectors:

a=Peye_Plonk

r=upxa

U=axr

AN
i&#:) Computer Graphics

Looking At a cube

m Setting up the OpenGL look-at viewing transformation:

display () {
glClear (GL COLOR BUFFER BIT) ;
glMatrixMode (GL MODELVIEW) ;
glLoadIdentity () ;
// Setting up the view

gluLookAt (
0.0, 0.0, 5.0, // Eye is at (0,0,5)
0.0, 0.0, 0.0, // Center is at (0,0,0)
0.0, 1.0, 0.); // Up is in positive Y direction

// Now we are using the world frame
// Draw Object

glColoxr3f (1.0, 1.0, 1.0);
glutWireCube (1.0) ;

glutSwapBuffers() ;

Computer Graphics

gluLookAt() and other transformations

 The user can define the model-view matrix to achieve the
same function

e But from the concept of the gluLookAt () as the camera
position, while the other follow-up transformation as
object position

* gluLookAt in the OpenGL () function is the only specialized
for positioning the camera function

*
i&i@:) Computer Graphics

Outline

* 2D Viewing
* 3D Viewing
* Classic view

* Computer view
e Positioning the camera

* Projection

Computer Graphics

Orthogonal Projection

|.Apply the world to view transformation

2. Apply the parallel projection matrix to project the
3D world onto the view plane

(1 0 0 O U, u, u, —u*vrp
r
01 0 0 y v, Vv, Vv, = 1; *VIp
00 0 O n, n, n, —-nevrp
0 0 0 1 0O 0 O]

3. Apply 2D viewing transformations to map the
view window on to the screen

AN
i&i#:) Computer Graphics

Orthogonal Projection Matrix: Homogeneous coordinates

P =Mp X, =X
1 0 0 O V, =Y
0O 1 0 O
M = p=0
0O 0 0 O
000 1 w, =1
Y
FE TR P ST AAM =1, A5 dext) 45 A
A AEEAE. /.(X Y, 2)
(X5 ¥ O).
xp 1 0 0 0] x]
Yo | _ 0O 1 0 0 y /. X
2| 000 0f]z] /
1] [0 o0 o0 1][1]

Perspective Projection

* The points are transformed to the view plane along
lines that converge to a point called

* projection reference point (prp) or

 center of projection (cop)

- prp is specified in terms of the

viewing coordinate system

AN
i&#:) Computer Graphics

Transformation Matrix for Perspective Projection

* prp is usually specified as perpendicular
distance d behind the view plane

transformation matrix
for perspective projection

10 0
01 0
00 0
0 0 1/d

— o o 9

AV
i&i#:) Computer Graphics

Perspective Projection

projection
plane

center of projection
(eye point)

M| | #ow tail snouid
.y;‘ this bunny be?

Basic Perspective Projection

similar triangles

Given p = Mq, write out the Projection Matrix M.

AV
i&#:) Computer Graphics

Homogeneous Coordinates

p = Mgq
10 0 0 X x|
i 01 0 0 REIN . y
oo 1 o 1=\, z
0 0 1/d 0] 1 | z/d |

*
i&i#:) Computer Graphics

Perspective Divide

* WRw # 1, FBARN TR FRLAW TS BIRRZR7-AY

s XFEENIRE | SR
X y

X = , J =e—
P TTraT T
IR GERAENLTE,

|
QL

AY N3 :
{G#Z) Computer Graphics

Perspective Projection

* Perspective Divide ;2IFZHRY , SEEEYISYERE.

BisoFiL (CoP) ImAINIRIRSIfG |, RI4aE1SLEE COPITRYRT
Qﬁjt

- BNEREFREZN , BEAEHIIZEE,

- BNEREARER , BAio—FKIRFES LRIFE /IR
R IaHIEEREE.

wt*

5 f"ﬁ’ Computer Graphics

Perspective Projection

|.Apply the view orientation transformation

2.Apply translation, such that the center of the view
window coincide with the origin

3.Apply the perspective projection matrix to project
the 3D world onto the view plane

(1 0 07 1 0 0 =cx] (u, u, u, =uc*vip]

01 0 0 01 0 =-cy vV, v, =verp
x X r

0 0 0 O 0 01 O n, n, N, —ROVIp

0 0 1/d 1 0 0 0 1 0 0 O 1

4.Apply 2D viewing transformations to map the view
window (centered at the origin) on to the screen

Computer Graphics

View Window

* View window is a rectangle in the view plane specified
in terms of view coordinates.

* Specify center (cx, cy), width and height_ﬂl

* prp lies on the axis passing Tex,)|~

through the center of the

view window and parallel

to the n-axis prp
vIp

AN
i&#:) Computer Graphics

View Volume & Clipping

* For perspective projection the view volume is a semi-infinite
pyramid with apex (Tfis) at prp and edges passing through the

corners of the view window
back plane

* For efficiency, view volume is
made finite by specifying the
front and back clipping plane
specified as distance from the

front plane

view plane

*
i&i@:) Computer Graphics

View Volume & Clipping

* For parallel projection the view volume is an infinite parallelepiped
(3£477~EAK) with sides parallel to the direction of projection

back plane

_=x~_front plane

* View volume is made finite by specifying
the front and back clipping plane specified ‘ :
as distance from the view plane {

view plane._

* Clipping is done in 3D by clipping the world against the front clip
plane, back clip plane and the four side planes

Computer Graphics

The Complete View Specification

» Specification in world coordinates

e position of viewing (vrp),
direction of viewing(-n),

* up direction for viewing . back plane
(upVector) .
* Specification in view coordinates wplector \
* view window : center (cx, cy), -

width and height, viewDirectiog

* prp : distance from the view
plane,

 front clipping plane : distance

from view plane

* back clipping plane : distance
from view plane

Computer Graphics

Orthogonal view in OpenGL

glOrtho(left, right, bottom, top, near, far);

top
_ J}
y 1%
left —jh

o}

toward

~ the ‘-L right

viewpoint
5 viewing volume
bottom
near far

Computer Graphics

Perspective in OpenGL

glFrustum(left, right, bottom, top, near, far);

T

bottom
- near -

A
Y

far

giMatrixMode(GL_PROJECTION);
glLoadldentity();

glFrustum(left, right, bottom, top, near, far);

Computer Graphics

Perspective in OpenGL

gluPerspective(fovy, aspect, near, far);

near

far

FOV is the angle between the top and bottom planes

AV
i&#:) Computer Graphics

Field of application

* Application of glFrustum sometimes difficult to get the desired results

* GluPerspective (fovy, aspect, near, far) can provide a better results

w

—
>

fovy

X

Aspect=w /h

Computer Graphics

Normalization

Normalization allows for a single pipeline for both perspective
and orthogonal viewing.

It simplifies clipping.

Projection to the image plane is simple (discard z).

z is retained for z-buffering (visible surface determination)

Computer Graphics

glOrtho (left, right, bottom, top, near,

(right, top, —far)
(1,1, 1)

——

(left, bottom, —near) (—‘i =1,)7 |

far)

\ - - xHE _
Z=-X z-x/ z=1
= _far ®9*THE
. | | h
4

Z=-—near X

1

SR At A CoF
T Jo R TR 8
& BT 45

Transformation Pipeline

1. Vertices of the Object to draw
are in Object space (as modelled
in your 3D Modeller)

2. ... get transformed into World

| / space by multiplying it with the

| Model Matrix

T 3. Vertices are now in World space

(used to position the all the
objects in your scene)

e ! ModelMatrix | #z | } View Matrix

7

Object Space World Space
4. ... get transformed into Camera
space by multiplying it with the

7

: | % View Matrix
L _“E"Jr - A g = - 5. Vertices are now in View Space
" —think of it as if you were looking
O at the scene throught “the camera”

6. ... get transformed into Screen
space by multiplying it with the
Projection Matrix

\ : J Projection
Camera Space Matrix Screen Space

7. Vertex is now in Screen Space —
This is actually what you see on
your Display.

5] Computer Graphics

Projective Rendering Pipeline

object world viewing
) YN 9
ocs 92 wes 2Y ves V20
modeling viewing t P"‘;lect"-"t':'
i i ransformation . .
transformation transformation clipping
OCS - object/model coordinate system AN CCS
. perspective
WCS - world coordinate system divide normalized
_ : ; device
VCS - viewing/camera/eye coordinate system N20D
] d d NDCS
CCS - clipping coordinate system viewport
transformation
NDCS - normalized device coordinate system device
DCS

DCS - devicel/display/screen coordinate system

Computer Graphics

